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The Incremental 
Commitment 
Model provides a 
process framework 
for successful 
opportunistic 
software 
development and 
decision-making. It’s 
based on balancing 
opportunities and 
risks in software 
development projects.

I
ncreasingly rapid IT changes require software development projects to continuously 
monitor and adapt to new sources of opportunity and risk. Projects that do not 
capitalize on new opportunities will generally find their products unable to compete. 
Projects that do not assess and manage their risks will generally find themselves 

awash in rework, overruns, and product defects.

With respect to expected value of a software- 
intensive system, opportunity and risk are two sides 
of the same coin. For any new source of potential 
loss in system value, the risk exposure RE equals 
P(Loss) ∗ S(Loss), where P(Loss) is the probability 
that the new development will decrease the system’s 
value and S(Loss) is the resulting loss. Similarly, 
for any new source of potential value gain, the op-
portunity exposure OE equals P(Gain) ∗ S(Gain), 
where P(Gain) is the probability that the new devel-
opment will increase the system’s value and S(Gain) 
is the resulting gain.

Potential sources of value gain include improved 
commercial-off-the-shelf (COTS) products, reusable 
components from corporate or open source reposi-
tories, maturing open standards, strategic partner-
ships, and Web 2.0 mashups. The value gain might 
come in the form of faster time to market, reduced 
life-cycle costs, stronger capabilities, or increased 
customer satisfaction. On the other hand, losses in 
system value might emerge from user-interface dis-

continuities, complications in vendor support or in-
tellectual property rights, increased life-cycle costs 
from losing evolutionary control, and increased 
development costs—often accompanied by perfor-
mance losses—because of architectural mismatch 
among components.

A good example of the risks of architectural 
mismatch in component mashups was the Aesop 
system.1 It was a mashup of a GUI builder, an ob-
ject-oriented database management system, and 
two middleware packages, which was supposed to 
take 6 months and 1 person-year. Because of mis-
matches in architectural styles, component inter-
faces, and assumptions about ownership of control, 
the mashup ended up taking 2 years and 5 person-
years to produce something that was sluggish in 
performance and hard to modify.

The Incremental Commitment Model (ICM) 
provides a process framework to improve project 
monitoring and decision-making based on balanc-
ing opportunities and risks.2,3 We’ve developed an 
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ICM-based framework and automated tool that 
specifically identify the risks in architectural mis-
matches in component-based system development.

The ICM Process Framework
To adapt rapidly and successfully to increasing 
rates of change, projects must be able to assess and 
manage opportunities and risks; requirements, so-

lutions, plans, and business cases; and hardware, 
software and human factors concurrently rather 
than sequentially. Figure 1 illustrates ICM levels 
of effort in concurrent activities over a project life 
cycle. The illustration builds on Philippe Kruchten’s 
“hump” diagram for the Rational Unified Process 
(RUP).4

As with RUP, the magnitude and shape of ICM 
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Figure 1. Incremental Commitment Model levels of effort. The levels of effort for success-critical activities vary over a 
project life cycle. The general milestone reviews synchronize concurrent activities. At these reviews, the system’s key 
stakeholders review feasibility evidence from the preceding phase to determine whether to commit their resources 
to proceeding with the next phase. The DCR and OCR subscripts indicate that for each increment, the stakeholders 
review the feasibility of committing to the operation of the currently developed increment and to the development of 
the next increment. The subscripted operational capability (OC) callouts refer to the levels of effort devoted to the 
development-and-evolution and operations-and-maintenance activities of each OC increment.
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levels of effort are risk-driven and likely to vary 
from project to project. In particular, they’re likely 
to have many small, short-lived risk- and oppor-
tunity-driven peaks and valleys, rather than the 
smooth curves shown for simplicity in Figure 1. 
Figure 1 mainly emphasizes the necessary con-
currency of the primary success-critical activities 
listed down the left column. So, in the exploration 
phase, a primary activity is system scoping. But 
scoping systems well also involves considerable ef-
fort in the activities of envisioning opportunities, 
understanding needs, identifying and reconciling 
stakeholder goals and objectives, architecting so-
lutions, life-cycle planning, evaluating alterna-
tives, and negotiating stakeholder commitments.

For example, to explore the initial scoping of 
a system of systems (SoS) for a metropolitan ar-
ea’s disaster-relief effort, you wouldn’t just inter-
view stakeholders and compile a list of their ex-
pressed mission needs. You would also explore 
opportunities for reusing parts of other metro-
politan-area relief systems as well as for obtaining 
development funds from federal agencies and for 
applying virtual-collaboration technologies. In the 
activity to understand needs, you would concur-
rently assess the capability and compatibility of 
existing local disaster-relief systems to determine 
which ones would need the least work to reengi-
neer into a SoS. You would assess each existing 
system’s scope of authority and responsibility to 
determine whether the best approach would be a 
truly integrated, centrally managed SoS or a best-
effort interoperable set of systems. Other concur-
rent activities might include exploring alternative 
architectural concepts for developing and evolving 

the system; developing alternative phased plans 
to determine which improvements would provide 
the best early benefits and foundations for future 
growth; evaluating relative feasibility, benefits, 
and risks for stakeholders to review; and negoti-
ating resource commitments to proceed into the 
valuation phase. 

Similar concurrency applies to all projects—
from large SoSs to small, time-constrained Web 
applications. Every year, we use the ICM to teach 
software engineering by having over a dozen stu-
dent teams define, design, develop, and deploy 
Web applications for real clients in a fixed 24-
week time period with a 92 percent success rate.

Synchronizing  
Concurrent Engineering
The anchor-point milestone review at the end of 
each life-cycle phase is the ICM mechanism for 
synchronizing, stabilizing, and assessing risk.5,6 
These reviews, labeled across the top of Figure 
1, focus on developer-produced evidence along 
with PowerPoint charts and Unified Modeling 
Language (UML) diagrams. The evidence helps 
key stakeholders determine the next level of 
commitment. 

Consider a system requirement to complete a 
real-time, safety-critical task in one second. De-
velopers in this case must provide evidence based 
on prototyping, benchmarking, modeling, or sim-
ulation using representative workloads. The evi-
dence must show that the as-designed system will 
meet the task-completion time requirement. This 
differs from a promise to “build it now and tune 
it later,” which is frequently the practice in ad hoc 
or agile development. If the requirement were for 
a 1-second desirable, 3-seconds acceptable user- 
response time for a noncritical system, agile meth-
ods would generally be fine.

The Exploration Commitment Review (ECR) 
focuses on an exploration-phase plan that includes 
the proposed scope, schedule, deliverables, and re-
source commitments by a key subset of stakehold-
ers. The plan content is risk-driven and might be 
only a single page for a small, uncontroversial ex-
ploration for which the risk of getting it wrong is 
minimal. A riskier exploration phase would require 
a more detailed plan outlining how the project will 
evaluate and manage the risk of going forward. 

The Valuation Commitment Review (VCR) 
is similarly risk-driven. The content includes the 
exploration-phase results and a valuation-phase 
plan, and the review includes all valuation-phase 
stakeholders. 

Both the Foundations Commitment Review 

Pass/Fail Feasibility Evidence Description 

Evidence provided by the developer and validated by independent experts that if the 
system is built to the specified architecture, it will
	 —	satisfy the requirements: capability, interfaces, level of service, and evolution;
	 —	support the operational concept;
	 —	be buildable within the plan’s budgets and schedules;
	 —	generate a viable return on investment;
	 —	generate satisfactory outcomes for all the success-critical stakeholders.

Shortfalls in evidence are sources of risk:
	 —	All major risks are resolved or covered by risk-management plans.

Risk items and risk-mitigation strategies serve as a basis for the stakeholders’ 
commitment to proceed.

Figure 2. Pass/fail feasibility evidence description. The FED provides 
a checklist to help stakeholders determine where independent experts 
are needed to review the criteria for stakeholders’ commitment to 
proceed.
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(FCR) and the Development Commitment Review 
(DCR) are based on the highly successful AT&T 
Architecture Review Board procedures.6 The FCR 
elaborates only high-risk aspects of the operational 
concept, requirements, architecture, and plans. 
The FCR requires evidence that at least one com-
bination of those artifacts satisfies the feasibility-
evidence criteria shown in Figure 2 (similar to the 
RUP life-cycle objectives milestone). At the DCR, 
developers must demonstrate that the particular 
choice of artifacts to be used for development will 
satisfy the feasibility-evidence criteria.

Risk-Driven Commitment Milestones
Figure 2 emphasizes that shortfalls in feasibility evi-
dence are sources of risk and so require risk-man-
agement plans. Stakeholders must consider the de-

gree of risk in going forward to the next phase as 
the key decision criterion for committing their re-
sources to it.

Figure 3 presents an overview of the ICM life-
cycle process. Like Figure 1, it identifies the concur-
rently engineered life-cycle phases, the stakeholder 
commitment review points, and the use of feasibil-
ity rationales to assess the compatibility, feasibil-
ity, and risk associated with the concurrent-engi-
neering artifacts. Each review point offers several 
alternatives:

The risks are negligible, and no further analysis 
or evaluation activities are needed to proceed to 
the next life-cycle phase.
The risk is acceptable, and work can proceed to 
the next phase.

■

■

Figure 3. The Incremental Commitment Model life-cycle processes. The ICM identifies the concurrently engineered 
life-cycle phases, the anchor-point reviews for stakeholder commitments, and the risk-based decision options 
stakeholders have for proceeding to the next phase, skipping the next phase, extending the current phase, or deciding 
to either terminate or rescope the project if the risks are too high or unaddressable.
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The risk is addressable but requires back- 
tracking.
The risk is too great and requires rescoping or 
halting the development process.

The system’s success-critical stakeholders as-
sess these risks. They base their commitment on 
whether the current system definition gives suffi-
cient evidence that the system will satisfy their value 
propositions. Many risk-driven paths exist through 
the life cycle. A more risk-seeking set of stakehold-
ers will tend to go forward or skip phases at a deci-
sion point. For the same risk level, more risk-averse 
stakeholders might choose to extend the previous 
phase, rescope, or discontinue the project.

Opportunity and Risk Management 
Alternatives: A COTS Example
Suppose that at a project’s beginning, an opportu-
nity exists to choose either a higher-performance 
COTS product B or a comparable but lower- 
performance COTS product C. A pure opportu-
nistic approach would choose B and have C as a 
fallback. However, during integration, the proj-
ect finds out that B has serious architectural mis-
matches with another project-essential COTS 
product A. This will cause project overruns of 3 
months and US$300K.

During integration, the probability of the mis-
match is 1.0, so it’s not a risk but a problem. But 
earlier, its probability was uncertain, and an early 
ICM milestone review would have identified it as 
a source of risk. In accordance with the FED (see 
Figure 2), it would require a risk-management 
plan, which could use one or more of the main risk- 
mitigation strategies—namely, buying informa-
tion, risk avoidance, risk transfer, risk reduction, 
or risk acceptance. In general, buying information 
is the best strategy to try first because it provides 
more insight into which other strategies to employ. 
We illustrate these five strategies with our COTS 
example. (Other COTS-specific process guidelines 
are less specific about how COTS-integration risks 
drive development decisions. The ICM provides 
ways for strengthening their application.7–10)

Buying information. The project decides to spend 
$30K prototyping the integration of COTS pack-
ages B and C with COTS package A. It finds the ar-
chitectural mismatches between A and B as well as 
the likely costs and schedules to resolve them. It also 
finds that COTS package C would integrate easily 
with A, but with a 10 percent performance loss. 
This information enables the stakeholders to better 
evaluate the other risk mitigation strategies.

■

■

Risk avoidance. The customer agrees that perfor-
mance reduction is preferable to the prospect of late 
delivery. So, the project proceeds with COTS prod-
uct C rather than B.

Risk transfer. The customer decides that the perfor-
mance increase is worth the extra time and money 
and establishes a risk reserve of 3 months and 
$300K. These are used if they’re needed during in-
tegration, but the developer receives award fees to 
the extent that fewer resources are needed.

Risk reduction. The developer and customer agree 
to integrate A and B in parallel early in the proj-
ect, with added cost but with no delay in delivery 
schedule.

Risk acceptance. The developer decides that having 
a proprietary solution to integrating A and B will 
provide a competitive edge on future projects, and 
decides to fund and patent the solution.

Assessing Software  
Integration Risks
The risk-mitigation strategies show different op-
portunistic solutions resulting from different 
stakeholder value propositions. The following as-
sessment framework and corresponding tool, Inte-
gration Studio (iStudio),11 offer a strategy to bal-
ance risks and opportunities for the example we 
highlighted earlier.

The framework is modeled using three compo-
nents: a COTS-interoperability analyzer, COTS-
representation attributes (to define components), 
and integration rules. Framework inputs are vari-
ous COTS component definitions and the high-
level system architecture. Output is an interoper-
ability assessment report, which includes results of 
three major analyses:

Internal-assumption mismatch analysis, which 
identifies mistaken assumptions that interact-
ing COTS systems make about each other’s in-
ternal structure.12

Interface (or packaging) mismatch analysis, 
which identifies incompatible communication 
interfaces between two components.
Dependency analysis, which identifies facili-
ties that the COTS packages used in the sys-
tem require (for example, Java-based customer- 
relationship-management solutions require Java 
Runtime Engine).

The framework identifies 42 attributes, which 
appear in Figure 4. These attributes define as-

■

■

■

The risk-
mitigation 
strategies 

show different 
opportunistic 

solutions 
resulting 

from different 
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sumptions about components, along with their 
interfaces and dependencies. In addition, the 
framework defines 62 interoperability-analysis 
rules to identify architectural mismatches for a 
given architecture. Of these 62, 50 rules address 
internal-assumption mismatches, seven rules 
identify interface mismatches, and five rules de-
tect dependency mismatches.

For example, an interface-mismatch rule de-
fines a data-interaction mismatch that can occur 
when two interacting components exchanging 
data don’t support any common data-exchange 
connectors or protocols. When the framework (or 
the framework-supported tool) identifies a mis-
match, it recommends possible strategies for use in 
resolving it. (Details of interoperability-assessment 
attributes and rules are available elsewhere.11)

The iStudio tool developed on the basis of this 
framework inputs high-level, component-based 
deployment architectures together with compo-
nent-interoperability characteristics. The compo-
nent characteristics are based on interoperability 
analyses and the aforementioned attributes (in 
XML). iStudio specifies every interaction in the 
architecture by

interaction type (control and/or data),
interaction direction (unidirectional, bidirec-
tional), and
interaction initiator (the component initiating 
the interaction).

Using the deployment architectures, iStudio deter-
mines the system deployment topology as well as 
the distribution of COTS products. It uses the 62 

■

■

■

interoperability analysis rules for performing archi-
tecture-mismatch analysis. 

Upon completing its analysis, the tool outputs 
a report that includes the three assessment-results 
groups: internal assumptions, interfaces, and de-
pendencies. Developers can use this report to iden-
tify the amount of effort required to integrate the 
COTS products. The tool also packages a Web site 
that lets analysts create XML-based COTS product 
definitions, then store and reuse them across mul-
tiple architectural assessments.

COTS Assessment  
and Selection Scenario
A project at NASA’s Jet Propulsion Laboratory 
(JPL) offers a COTS assessment and selection prob-
lem derived from several existing challenges. This 
assessment scenario helps illustrate our frame-
work’s utility and ground it in an existing real-
world problem.

Four JPL planetary scientists in Pasadena, Cali-
fornia, are responsible for managing several giga-
bytes of planetary-science data that includes digital 
content and the corresponding metadata. The JPL 
scientists need to share their data with colleagues 
at the European Space Agency (ESA) in Madrid, 
Spain, who also manage several gigabytes of plan-
etary data. In addition, thousands of external users, 
including other planetary scientists and educators 
(each with their own preferences), are customers of 
the data available through JPL and ESA’s indepen-
dent planetary-data systems.

To support the planetary scientists’ needs, JPL 
and ESA commissioned a team of software ar-
chitects and engineers to design and implement a  
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Figure 4. COTS interoperability representation attributes. A framework for assessing component interoperability 
identifies 42 attributes that define assumptions, interfaces, and dependencies about components. 
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software system that can support the data-distribu-
tion tasks outlined between JPL and ESA. The sys-
tem must also serve the external users.

Figure 5 displays a potential architecture for 
such a system. The systems based at JPL and ESA 
use a COTS digital-asset-management system such 
as DSpace, data stores that include at least one type 
of database system such as Oracle or Sybase, and 
two custom components—one of which manages 
user queries while the other retrieves data from its 
counterpart system at periodic intervals.

Solving the data-sharing challenge boils down 
to answering the question of how to select the ap-
propriate COTS components for supporting data 
distribution, given so many heterogeneous systems 
involved. Several considerations might guide the 
COTS technologies to deploy in such a scenario—
for example, an organization’s requirements, the 
skill levels of programmers tasked with imple-
menting the system, or even the system’s architec-
ture. It’s important, however, to assess and deter-
mine COTS-integration risks before developing, 
acquiring, and deploying the components to avoid 
rework caused by architecture mismatches. 

Our example has two major considerations 
in assessing COTS products and implementation 
technologies to identify interoperability conflicts:

interoperability conflicts when integrating the 
digital-asset-management system with the da-
tabase, and
language selections for developing the custom 
components to minimize the development ef-
fort by leveraging existing support that the 
COTS products provide.

To address these two considerations, the ana-
lyst will use the iStudio tool and provide the fol-
lowing information for every interaction in the 
proposed architecture:

data and/or control interaction,
unidirectional or bidirectional interaction, 
and
which component initiates the interaction.

Assume an assessment scenario where DSpace 
is the digital-asset-management system and 
MySQL is the database server. The analyst will 
provide the definitions for DSpace and MySQL 
and define the deployment architecture, along 
with various component interactions, using the 
iStudio tool for assessment. (Figure 6 shows a 
snapshot of the tool interface.)

Our framework’s integration-analysis compo-
nent will use COTS attributes and the deployment 
architecture definition and apply the rules from the 
integration-rules repository to identify

common interfaces supported by MySQL and 
DSpace, bridging connectors and the required 
glue-code type (communication, conversion, 
coordination, or a combination thereof);11 for 
example, DSpace and MySQL lack a common 
data-communication interface, so this will re-
quire glue code.

■

■

■

■

■

■

Figure 6. Integration 
Studio tool interface 
snapshot. The iStudio 
tool supports integration 
analysis for COTS 
product interactions.
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Figure 5. A potential architecture for a large-scale data-distribution 
scenario. The architecture supports planetary scientists’ needs at 
NASA’s Jet Propulsion Laboratory and the European Space Agency in 
Madrid as well as thousands of external users.
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internal-assumption mismatches between 
MySQL and DSpace;11 for example, if either 
MySQL or DSpace is inactive while the other 
is transmitting information, the system will lose 
this data. Another example occurs when data 
being transferred from MySQL is later back-
tracked, causing system inconsistencies.
COTS dependencies and verify that they’ve 
been satisfi ed in the given architecture.
recommended languages for the query man-
ager and data-retrieval component to simplify 
glue-code development between COTS and 
custom components. For example, the tool will 
recommend that custom components, such as 
query-manager and data-retrieval components, 
be built using Java because DSpace supports it.

In this example, where the two interacting com-
ponents (DSpace and MySQL) lack common in-
terfaces, the framework and iStudio tool will rec-
ommend a connector requirement that can enable 
communication between the two components (in 
this case, a JDBC-MySQL driver). Our framework-
iStudio tool will output these fi ndings in a report 
for the project analyst. The project analyst can use 
these fi ndings to determine the software integration 
risks if the project selects the given components for 
implementation.

S oftware projects and organizations can 
increase their success rates in software 
development by better assessing and bal-

ancing their opportunities and risks. By requiring 
early evidence that opportunistic approaches to 
software development are feasible (where possible 
via tools, such as iStudio, and otherwise via COTS 
integration experiments or prototypes), the ICM 
can help projects determine whether attractive op-
tions such as Web 2.0 mashups are likely to lead to 
satisfying success or frustrating failure.
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